
SHALL WE PLAY
A GAME?

Hacking and weaponizing
the NES Classic Mini

SHALL WE PLAY A GAME?

‣ Ross (@HypnInfosec) and Dale (@dale_nunns)

‣ like retro computing and consoles

‣ also like hacking/breaking/making/fixing stuff

Who we are:

SHALL WE PLAY A GAME?

Why this talk:
‣ combination of the stuff we like

‣ good way to explore embedded device hacking

‣ relatively affordable & easily accessible

‣ fun to play with ¯_(ツ)_/¯

SHALL WE PLAY A GAME?

About the  
NES mini

SHALL WE PLAY A GAME?

About the NES Classic mini:
‣ modern remake of the NES-001 gaming console

SHALL WE PLAY A GAME?

The NES Classic mini is NOT:
‣ able to play original cartridges

‣ hard to find (available at many online retailers)

‣ "just a Raspberry Pi" (eg: RetroPie)

‣ meant to be modified/customized

SHALL WE PLAY A GAME?

About the NES Classic mini:
‣ USB powered

‣ HDMI output

‣ various models

SHALL WE PLAY A GAME?

About the NES Classic mini:
‣ comes with 30 games (roms)

‣ has a UI for selecting games to play

‣ uses custom emulator "kachikachi" to play NES ROMs

‣ coded with SDL and other open source tools

‣ see https://www.nintendo.co.jp/support/oss/

https://www.nintendo.co.jp/support/oss/

SHALL WE PLAY A GAME?

SHALL WE PLAY A GAME?

Software Hack

SHALL WE PLAY A GAME?

The "hakchi" mod/hack:
‣ initially written by "madmonkey"

‣ now on it's 3rd version: "Community Edition"

SHALL WE PLAY A GAME?

hakchi by madmonkey

SHALL WE PLAY A GAME?

hakchi2 by ClusterM

SHALL WE PLAY A GAME?

hakchi Community Edition

SHALL WE PLAY A GAME?

The "hakchi" mod/hack:
‣ changes the firmware

‣ changes startup scripts (eg: for mods)

‣ remaps paths (eg: symlinks ROM location)

‣ allows custom NES roms

SHALL WE PLAY A GAME?
allows custom NES roms

SHALL WE PLAY A GAME?

The "hakchi" mod/hack:
‣ adds some USB support via USB Host OTG adapters

‣ "90 degree" adapter seems to work well

‣ prevents Hakchi from communicating with your console

WRONG! 
(left from power)

Correct 
(right from power)

SHALL WE PLAY A GAME?

The "hakchi" mod/hack:
‣ USB storage - allowing more games (and emulators)

‣ formatting as NTFS seems to work best

‣ use https://github.com/swingflip/Hakchi-USB-tools

‣ not all flash drives work - but the "SanDisk  

Cruzer Blade" flash drives seem to

‣ mounts to "/media"

https://github.com/swingflip/Hakchi-USB-tools

SHALL WE PLAY A GAME?

‣ enables ftp + ssh (login "root" with no password)

‣ host-networking on ip: 169.254.13.37 (ports 21 or 22) 
(when not using OTG USB!)

The "hakchi" mod/hack:

login as: root

hakchi v1.0.4-122 by madmonkey

Special thanks to all of the contributors including: potyl, mistydemeo,  
skogaby, DanTheMan827, KMFDManic, Mugi, princess_daphie, xorloser, ghoost82,  
thomas-alrek, ClusterM, zigg, thomascrha and anyone else I may have forgotten

root@madmonkey:~#

SHALL WE PLAY A GAME?

Root?

"Big F*ing deal, what can you do with it" 
https://twitter.com/officialmcafee/status/1025009808968171521

SHALL WE PLAY A GAME?

So What  
Can We Do?

SHALL WE PLAY A GAME?

So what can we do?
‣ very few commands/tools

‣ mostly just busybox widgets

‣ let's see how far bash + busybox can take us!

SHALL WE PLAY A GAME?

‣ memory map of "kachikachi" (emulator)

Getting access to process memory

root@madmonkey:~# pgrep kachikachi  
1869

root@madmonkey:~# cat /proc/1869/maps  
00010000-00073000 r-xp 00000000 fe:00 292 /usr/bin/kachikachi  
00083000-0008d000 rw-p 00063000 fe:00 292 /usr/bin/kachikachi  
0008d000-0009d000 rw-p 00000000 00:00 0  
00ebc000-00f8f000 rw-p 00000000 00:00 0 [heap] 
b1e40000-b2200000 rw-s 11420000 00:05 398 /dev/mali  
b5717000-b5718000 ---p 00000000 00:00 0  
[...]  
b5718000-b5f17000 rwxp 00000000 00:00 0 [stack:1902]  
b5f17000-b5fec000 r-xp 00000000 fe:00 365 /usr/lib/libasound.so.2.0.0  
b5fec000-b5ffc000 ---p 000d5000 fe:00 365 /usr/lib/libasound.so.2.0.0  
b5ffc000-b6000000 rw-p 000d5000 fe:00 365 /usr/lib/libasound.so.2.0.0

SHALL WE PLAY A GAME?

Dumping heap (memory)
#!/bin/bash  
 
Dumps the full memory heap to disk  
 
PID=`pgrep kachikachi`  
 
HEAP=`cat /proc/$PID/smaps | grep heap | awk -F"-" '{print $1}'`  
END=`cat /proc/$PID/smaps | grep heap | awk -F"[-]" '{print $2}'  ̀
HEAP_DEC=`printf "%d" 0x$HEAP`  
END_DEC=`printf "%d" 0x$END`  
 
COUNT=$(($END_DEC - $HEAP_DEC))  
 
if [["$#" -ne 1]]; then  

OUTPUT="/tmp/heap.bin"  
else  

OUTPUT=$1  
fi  
 
dd if=/proc/$PID/mem bs=1 skip=$HEAP_DEC count=$COUNT 2>/dev/null > $OUTPUT  
 
echo "Dumped heap to: $OUTPUT (`stat -c "%s" $OUTPUT`)"

SHALL WE PLAY A GAME?

Reading bytes
#!/bin/bash  
 
Reads a byte from a given address  
 
PID=`pgrep kachikachi`  
 
if [$PID] then  

HEAP=`cat /proc/$PID/smaps | grep heap | awk -F"-" '{print $1}'`  
if [$HEAP] then  

BASE=`printf "%d" 0x$HEAP`  
OFFSET=`printf "%d" $1`  
ADDRESS=$(($BASE + $OFFSET))  

 
dd if=/proc/$PID/mem bs=1 skip=$ADDRESS count=1 2>/dev/null | \  
 xxd -p | awk '{print $1}'  

else  
exit 1  

fi  
else  

exit 1  
fi

SHALL WE PLAY A GAME?

Writing bytes
#!/bin/bash  
 
Writes a byte to a given address  
 
PID=`pgrep kachikachi`  
 
if [$PID] then  

HEAP=`cat /proc/$PID/smaps | grep heap | awk -F"-" '{print $1}'`  
if [$HEAP] then  

BASE=`printf "%d" 0x$HEAP`  
OFFSET=`printf "%d" $1`  
ADDRESS=$(($BASE + $OFFSET))  
BYTE=`echo -ne "\x${2/0x/}"`  

 
echo -n $BYTE | dd of=/proc/$PID/mem bs=1 seek=$ADDRESS conv=notrunc count=1  

else  
exit 1  

fi  
else  

exit 1  
fi

SHALL WE PLAY A GAME?

Using a mod...
‣ made by CompCom

‣ https://github.com/CompCom/OptionsMenu

‣ listens for key combo

‣ displays custom, configurable, menu

https://github.com/CompCom/OptionsMenu

SHALL WE PLAY A GAME?
Extract game state from memory

SHALL WE PLAY A GAME?
Trigger events based on in-game activity

SHALL WE PLAY A GAME?
Manipulate memory / apply Game Genie codes

SHALL WE PLAY A GAME?

The Hardware

SHALL WE PLAY A GAME?

Hardware
‣ SoC: Allwinner R16 (4-core ARMv7)

‣ RAM: Ask NT5CC128M16IP-DI (256MB)

‣ NAND: Macronix MX30LF4G18AC-TI (512MB)

‣ PMU(Power Management Unit): X-POWER AXP223

‣ HDMI Transmitter: EPMI EP952

SHALL WE PLAY A GAME?

Hardware
‣ can put the console into FEL (recovery) mode (a type of

recovery mode) and get low-level access

‣ micro-usb port normally used for power

‣ with correct drivers enabled in the kernel can use of

RNDIS to establish a network connection with host PC

‣ usb port is OTG - client and usb host mode

SHALL WE PLAY A GAME?
Internal Photos - SNES Classic

SHALL WE PLAY A GAME?
Internal Photos - SNES Classic

SHALL WE PLAY A GAME?
Internal Photos - SNES Classic

SHALL WE PLAY A GAME?
SoC Allwinner R16

SHALL WE PLAY A GAME?
Hardware connections

SHALL WE PLAY A GAME?

UART / Serial

SHALL WE PLAY A GAME?

UART (Serial)
‣ hidden on the board

‣ gives access to uboot console and linux boot messages

‣ baudrate is 115200 and is 3.3v

‣ requires USB to Serial adapter (FTDI / CH430 etc)

SHALL WE PLAY A GAME?
UART pins marked on back of board

SHALL WE PLAY A GAME?

UART (Serial) - boot messages:
U-Boot 2011.09-rc1 (May 11 2017 - 16:32:31) Allwinner Technology  
[0.220]version: 1.1.  
[0.223]uboot commit : eb2b275e0877fc98b3ba6d3b7bab225ebecb993a  
ready

no battery, limit to dc  
no key input  
dram_para_set start  
dram_para_set end  
 
Using default environment  
 
In: Out: Err:  
Uncompressing Linux... done, booting the kernel.  
ion: failed to create debug files.  
<4sunxi_leds_fetch_sysconfig_para script_parser_fetch "leds_para" leds_used = -1067179912

[audio] err:try to get audio_pa_ctrl failed!

[I2S1]sunxi-i2s1 cannot find any using configuration for controllers, return directly!  
[I2S]sndi2s1 cannot find any using configuration for controllers, return directly  
ths_fetch_sysconfig_para: type err device_used = 1.  
fetch C0_LV_count from sysconfig failed  
 

SHALL WE PLAY A GAME?

UART (Serial) - boot messages (hakchi):

hakchi init script version: 1.0.2  
 
loading hakchi  
 
waiting for usbhost ... 0  
usbMode: device  
overmounting /bin  
overmounting /etc  
overmounting /root  
overmounting /etc/init.d/S92rndis on /etc/init.d/S90usb-gadget  
menu code: 000  
 
Welcome to CLOVER dp-sneseur-nerd release-v2.0.7-0-geb2b275BuildId final.cis.cis-d9-
clvrel0.20170511164229CEST  
 
madmonkey login:

SHALL WE PLAY A GAME?

FEL Mode

SHALL WE PLAY A GAME?

FEL mode
‣ hold "reset" for 5 seconds while powering on

‣ a low-level USB programming and recovery mode in Boot

ROM of Allwinner System-on-Chip

‣ FEL commands are chip, not device, specific

‣ read & write memory and execute code

‣ dump or write kernel and firmware

SHALL WE PLAY A GAME?

FEL mode - clean boot
[0.213]  
 
U-Boot 2011.09-rc1 (May 11 2017 - 16:32:31) Allwinner Technology  
 
[0.221]version: 1.1.0  
[0.223]uboot commit : eb2b275e0877fc98b3ba6d3b7bab225ebecb993a  
 
ready  
no battery, limit to dc

SHALL WE PLAY A GAME?

FEL mode - upload fes1.bin

sunxi-fel write 0x2000 fes1.bin

FEL mode - execute fes1.bin

sunxi-fel exec 0x2000

SHALL WE PLAY A GAME?

FEL mode - Initialising DRAM and switch to FES
fes commit : fc3061df4dbd4153819b2d2f141d82b88fea51cf  
 
begin to init dram  
DRAM DRIVE INFO: V1.7  
DRAM Type =3 (2:DDR2,3:DDR3,6:LPDDR2,7:LPDDR3)  
DRAM zq value: 00003bbbDRAM CLK =600 MHZ  
ID CHECK VERSION: V0.1  
using ic R16  
USE PLL DDR1  
USE PLL NORMAL  
PLL FREQUENCE = 1200 MHZ  
DRAM PLL DDR1 frequency extend open !  
...  
DRAM PHY INTERFACE PARA = 02040102  
DRAM VTC is disable  
DRAM dynamic DQS/DQ ODT is on  
DRAM DQS gate is PD mode.  
DRAM one rank training is on,the value is 91003587  
DRAM work mode register value = 004318d4  
DRAM SIZE =256 M  
set one rank ODTMAP  
DRAM simple test OK.  
init dram ok

SHALL WE PLAY A GAME?

FES mode - upload uboot.bin

sunxi-fel write 0x47000000 uboot.bin

FES mode - command to run instead of kernel

sunxi_flash phy_read 47400000 30 20;efex_test

FES mode - kernel dump boot command

sunxi-fel write 0x470604ff kernel_dump_bootcmd

SHALL WE PLAY A GAME?

FES mode - uboot booting
[194.359]  
 
U-Boot 2011.09-rc1-00000-g1352b18-dirty (Jan 02 2017 - 10:46:29) Allwinner Technology  
 
[194.368]version: 1.1.0  
[194.371]uboot commit : fc3061df4dbd4153819b2d2f141d82b88fea51cf  
 
ready

no battery, limit to dc  
no key input  
dram_para_set start  
dram_para_set end  
Using default environment  
 
In: Out: Err:  
Ph

SHALL WE PLAY A GAME?

Dump kernel to file

sunxi-fel read 0x47400030 0x600000 kernel.dump

(can then use additional tools to extract the "keyfile" from it to decrypt the

NAND flash storage)

SHALL WE PLAY A GAME?

Weaponizing

SHALL WE PLAY A GAME?

Weaponizing:
‣ Connectivity

‣ Tools

‣ Backdooring

SHALL WE PLAY A GAME?

Adding WiFi:
‣ "WPA Supplication" (wifi) hmod

‣ correct OTG cable/adapter

‣ compatible network dongle (RTL8188 seems to work)

‣ SSH in, run "wifi-wpa-setup", restart with  

OTG & wifi plugged in, hope for the best

‣ no visual indicator it works :/

https://hakchiresources.com/2018/05/07/hakchi-wi-fi-mod-wpa-supplicant/

SHALL WE PLAY A GAME?

wifi-wpa-setup mod:

SHALL WE PLAY A GAME?

wifi-wpa-setup mod:
login as: root

hakchi v1.0.4-122 by madmonkey

Special thanks to all of the contributors including: potyl, mistydemeo,  
skogaby, DanTheMan827, KMFDManic, Mugi, princess_daphie, xorloser, ghoost82,  
thomas-alrek, ClusterM, zigg, thomascrha and anyone else I may have forgotten

root@madmonkey:~#

 

 

 
 
 

SHALL WE PLAY A GAME?

wifi-wpa-setup mod:
login as: root

hakchi v1.0.4-122 by madmonkey

Special thanks to all of the contributors including: potyl, mistydemeo,  
skogaby, DanTheMan827, KMFDManic, Mugi, princess_daphie, xorloser, ghoost82,  
thomas-alrek, ClusterM, zigg, thomascrha and anyone else I may have forgotten

root@madmonkey:~# wifi-wpa-setup

 

 

 
 
 

SHALL WE PLAY A GAME?

wifi-wpa-setup mod:
login as: root

hakchi v1.0.4-122 by madmonkey

Special thanks to all of the contributors including: potyl, mistydemeo,  
skogaby, DanTheMan827, KMFDManic, Mugi, princess_daphie, xorloser, ghoost82,  
thomas-alrek, ClusterM, zigg, thomascrha and anyone else I may have forgotten

root@madmonkey:~# wifi-wpa-setup

Enter your SSID (Your SSID must not include spaces):  
D-Link

Enter your Wi-Fi password:  
hunter2

Details entered. You can reset your console now. Make sure that only your wifi  
adapter is connected on first boot. When your console boots, you need to turn  
off and reconnect your OTG hub and USB drive (if applicable). Failure to do so  
will mean you will have to restart the process.

SHALL WE PLAY A GAME?

Adding tools:
‣ via mods (eg: wireless tools, gdb)

‣ see HakchiResources.com "Experimental" mods

‣ or... add our own

http://HakchiResources.com

SHALL WE PLAY A GAME?

(url/dns brute forcer for webapps)

‣ git clone and compile with static flags:

‣ output of "file":

Porting GoBuster:

CGO_ENABLED=0 GOOS=linux GOARM=7 GOARCH=arm go build -a \  
-ldflags '-extldflags "-static"' .

gobuster: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV),  
statically linked, not stripped

SHALL WE PLAY A GAME?

SHALL WE PLAY A GAME?

‣ Kali is available for "ARMHF"

‣ can be run on a Raspberry Pi

‣ comes bundled with tools :D

‣ output of "file":

Porting Nmap:

/usr/bin/nmap: ELF 32-bit LSB pie executable ARM, EABI5 version 1 (SYSV),
dynamically linked, interpreter /lib/ld-linux.so.3, for GNU/Linux 3.2.0

SHALL WE PLAY A GAME?

‣ output of "ldd":

Porting Nmap:

libpcre.so.3 => /lib/arm-linux-gnueabi/libpcre.so.3 (0xb6c37000)  
libssh2.so.1 => /lib/arm-linux-gnueabi/libssh2.so.1 (0xb6c02000)  
libssl.so.1.1 => /lib/arm-linux-gnueabi/libssl.so.1.1 (0xb6ba1000)  
libcrypto.so.1.1 => /lib/arm-linux-gnueabi/libcrypto.so.1.1 (0xb69cc000)  
libz.so.1 => /lib/arm-linux-gnueabi/libz.so.1 (0xb69a2000)  
liblua5.3.so.0 => /lib/arm-linux-gnueabi/liblua5.3.so.0 (0xb6964000)  
liblinear.so.3 => /lib/arm-linux-gnueabi/liblinear.so.3 (0xb6944000)  
libstdc++.so.6 => /lib/arm-linux-gnueabi/libstdc++.so.6 (0xb67fe000)  
libm.so.6 => /lib/arm-linux-gnueabi/libm.so.6 (0xb673b000)  
libgcc_s.so.1 => /lib/arm-linux-gnueabi/libgcc_s.so.1 (0xb670c000)  
libc.so.6 => /lib/arm-linux-gnueabi/libc.so.6 (0xb65b9000)  
/lib/ld-linux.so.3 (0xb6fc8000)  
libpthread.so.0 => /lib/arm-linux-gnueabi/libpthread.so.0 (0xb658e000)  
libgcrypt.so.20 => /lib/arm-linux-gnueabi/libgcrypt.so.20 (0xb64c1000)  
libdl.so.2 => /lib/arm-linux-gnueabi/libdl.so.2 (0xb64ae000)  
libblas.so.3 => /lib/arm-linux-gnueabi/libblas.so.3 (0xb6416000)  
libgpg-error.so.0 => /lib/arm-linux-gnueabi/libgpg-error.so.0 (0xb63ec000)  
libgfortran.so.5 => /lib/arm-linux-gnueabi/libgfortran.so.5 (0xb630b000)

SHALL WE PLAY A GAME?

‣ copy binary + files + dependencies to NES Classic

‣ use "LD_LIBRARY_PATH" to load dependencies when

running

Porting Nmap:

LD_LIBRARY_PATH=. ./nmap <target> <options>

SHALL WE PLAY A GAME?

SHALL WE PLAY A GAME?

‣ In Ubuntu 16.04

Porting socat:

sudo apt install gcc-4.8-arm-linux-gnueabihf

download and extract socat .tar.get:  
http://www.dest-unreach.org/socat/download/socat-1.7.3.2.tar.gz

./configure LDFLAGS="-static"  
sed -i 's/gcc/arm-linux-gnueabihf-gcc/g' Makefile  
make

file ./socat  
 => ELF 32-bit LSB executable, ARM, EABI5 version 1 (GNU/Linux),
statically linked, for GNU/Linux 3.2.0

‣ Output of "file":

http://www.dest-unreach.org/socat/download/socat-1.7.3.2.tar.gz

SHALL WE PLAY A GAME?

‣ using a Raspberry Pi + Kali ARMHF

Compiling sources:

gcc slideshow.c -o slideshow --static  
 => ELF 32-bit LSB executable, ARM, EABI5 version 1 (...), statically linked, for GNU/Linux 3.2.0

‣ use GCC cross compilation
arm-linux-gnueabihf-gcc slideshow.c -o slideshow --static  
 => ELF 32-bit LSB executable, ARM, EABI5 version 1 (...), statically linked, for GNU/Linux 3.2.0

✓

✓

‣ using DockCross (dockcross-linux-armv7)
./dockcross-linux-armv7 bash -c '$CC slideshow.c -o slideshow --static'  
 => ELF 32-bit LSB executable, ARM, EABI5 version 1 (...), statically linked, for GNU/Linux 4.10.8

✗

("for Linux 4.10.8", gives a "FATAL: kernel too old" error)

SHALL WE PLAY A GAME?

These Slides!

SHALL WE PLAY A GAME?

Interacting with the hardware:
‣ FrameBuffer is used for video: /dev/fb0

‣ have to pause UI/emulator to write to it
kill -STOP `pgrep kachikachi  ̀
kill -STOP `pgrep ReedPlayer-Clover`

‣ controller events can be read from /dev/inputs/joystick

‣ events have a timestamp, value, type and number

‣ there's a "/dev/inputs/event4" for reset button event

SHALL WE PLAY A GAME?

Interacting with the hardware:
‣ "read_event" loop

‣ if left/right/A/B button

‣ next/previous slide

‣ check if video or image file exists

‣ output using "ffmpeg" or "decodepng" to frame buffer

‣ these slides are (hopefully) being played from our
custom slideshow app \:D/

SHALL WE PLAY A GAME?

Other stuff

SHALL WE PLAY A GAME?

Misc stuff:
‣ hakchi .hmod (mods) are just tar files:  

 tar -czvf "../MyMod.hmod" *

‣ Can have multiple firmwares on a single device and swap
between them (eg: NES on SNES)

‣ Active community on Reddit and Discord

‣ Wolf3D (and other games) ported across!

‣ Theres a "FBVNC" (FrameBuffer VNC) but  
frame rate is low with tearing

SHALL WE PLAY A GAME?

Misc stuff:
‣ "reset" button sends an event to "/dev/inputs/event4"

‣ input events have "time", "value", "type" and number"

‣ can capture + replay "reset" event:  
 cat /dev/inputs/event4 > reset.bin  
 cat reset.bin > /dev/inputs/event4

‣ was not able to automate/replay joystick  
inputs (was hoping to make a Mario bot)

SHALL WE PLAY A GAME?

RetroArch:
‣ RetroArch emulator adds supports from many more

platforms:
* snes9x2010 (Super Famicom/Super Nintendo) 
* gambatte_libretro (Game Boy, Game Boy Color) 
* mgba (Game Boy Advance) 
* genesis_plus_gx (Sega Master System, Genesis/Mega Drive, Game Gear) 
* stella (Atari 2600) 
* mednafen_pce_fast (PC Engine/Turbografx 16) 
* fb_alpha and fb_alpha_cps2 (various arcade machines) 
* picodrive (Sega Master System, Genesis/Mega Drive, Game Gear, Sega) 
* dosbox and more: http://buildbot.libretro.com/nightly/linux/armhf/

SHALL WE PLAY A GAME?

Stuff that sucked:
‣ Trying to get an OTG adapter (had to order online)

‣ getting USB and wifi working is mostly blind

‣ "just" use BuildRoot - https://hakchi.net/hakchi/sdk/

‣ "just" use GCC <= 4.9 (good luck if you need zlib)

‣ compiling stuff for SDL is a major pain

‣ relatively easy to crash to console

https://hakchi.net/hakchi/sdk/

SHALL WE PLAY A GAME?

‣ eBay OTG adapter

‣ Amazon OTG adapter

‣ Hakchi Community Edition

‣ HakchiResources (mods + Discord Channel)

Links

https://www.ebay.com/itm/90-Degree-Right-Angled-Micro-USB-2-0-OTG-Host-Adapter-with-USB-Power-for-Phone/253334976129?ssPageName=STRK%3AMEBIDX%3AIT&_trksid=p2057872.m2749.l2649
https://www.amazon.com/gp/product/B00LTHBCNM/ref=od_aui_detailpages00?ie=UTF8&psc=1
https://github.com/teamshinkansen/hakchi2
https://hakchiresources.com/

SHALL WE PLAY A GAME?

‣ https://www.xor.co.za/talks/shall_we_play/ (Dale)

‣ https://www.hypn.za.net/blog/?p=1272 (Ross)

Our notes + more info:

Thanks!

https://www.xor.co.za/talks/shall_we_play/
https://www.hypn.za.net/blog/?p=1272

